If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+20a-100=0
a = 1; b = 20; c = -100;
Δ = b2-4ac
Δ = 202-4·1·(-100)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{2}}{2*1}=\frac{-20-20\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{2}}{2*1}=\frac{-20+20\sqrt{2}}{2} $
| k^2+4k-30=2 | | 120x+42=100-42x | | -18=-4n-3n+ | | -8x+12=6(-7x+2) | | 3/4(x+8)=111/16 | | 3a^2+60a-900=0 | | r=58+0.125/0.5 | | 4+3(6x-1)=41 | | I/3x+8=17 | | 12h-5=13h+14 | | 3-3n+3n=3 | | 6x+42=8x-16 | | -z+-4=-2z | | 25a+.5=4.5 | | 0.5x+12.3=7.1-1.1 | | 7x+2=-44 | | x/126=4 | | 7x2=-44 | | k-9.09=0.8 | | 3v+23=-63v-8 | | -15x-2x=-73 | | 1.5=c/0.58 | | 1000000=3+3^x | | 3x/20+1=1/2 | | r-2.55=1.04 | | 31=x/14 | | 5r=-4+9r | | 19*x/2=4 | | 2.67-n=2.16 | | 100=3x+3 | | 10x-11=-29+x | | 3n+2(n+2)= |